当前位置:首页  首页通知公告

伟德国际BETVlCTOR官方网站“海外学术伙伴”暨“海外共建课程”专题讲座

2016-06-16来源:作者:审核人:编辑:阅读:1837

 报告题目:Automatic Quality Assurance for Big Data and Application Systems -Issues, Challenges, and Needs

  

主讲教授: Jerry Gao高泽宇教授

计算机工程系, San Jose State University,美国加州硅谷  

报告时间:2016620日,上午9

报告地点:计算机学院4001  

个人简介:Gao ZeyuJerry)高泽宇教授长期从事软件测试与质量保证领域的研究工作,现为美国加州硅谷San Jose State University计算机工程系教授,学校智慧技术、计算和复杂系统研究中心主任。他具有二十多年软件工程和软件测试研究以及工业实践的丰富经验。

他目前的研究领域包括云计算工程、大数据计算服务、软件工程、自动化测试、移动计算和云服务,移动TAAS等。目前已Communications of ACMIEEE Computer , IEEE Software, Journal of Software Maintenance: Research and Practice,Journal of System and Software等计算机和软件领域国际顶级期刊及杂志发表了超过200篇的论文。他长期担任《IEEE Software》《International Journal of Software Engineering and Knowledge Engineering 》《Software Engineering: An International Journal》等国际著名期刊的编委。在过去10年里,高教授组织了许多IEEE/ACM国际会议,并担任会议主席,包括:SEKE 06-2011, IEEE BigDataService 2015-2017, IEEE MobileCloud 2013-2014, IEEE SOSE 2011-2013, ICYCS'05, TQACBS 2005-2006, WMCS 2004-2010, IEEE EMOBS 07-08,TEST'07, EECC2006,AST2014

 

讲座内容:With the increase of big data applications in diverse application fields, big data computing and application service is becoming a very hot topic among academic researchers, industry practitioners, and government agencies. As more big data and application systems are gradually used in different application domains (such as business, healthcare, transportation, environment monitor and assessment, and smart city development), big data quality and quality assurance of big data application service systems become very important and critical. Based on recent reports, it has been estimated that erroneous data costs US businesses 600 billion dollars annually. In this talk, Dr. Gao will discuss automatic quality assurance issues and challenges for big data and application service systems and review the existing work. Moreover, he will share his recent work on these subjects. Furthermore, he will share his vision on research problems, directions, and needs on this subject in terms of quality control models, automation validation methods, approaches, and service platforms.

 

 

分享: